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Abstract

The development of emerging classes of hardware such as Internet of Thing devices and

Augmented Reality headsets has outpaced the development of Internet infrastructure.

We identify problems with latency, security and privacy in the global hierarchical

distributed Domain Name System. To remedy this, we propose the Spatial Name

System, an alternative network architecture that relies on the innate physicality of this

paradigm. Utilizing a device’s pre-existing unique identifier, its location, allows us to

identify devices locally based on their physical presence. A naming system tailored to

the physical world for ubiquitous computing can enable reliable, low latency, secure and

private communication.
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CHAPTER 1

Introduction

We’re a far cry from the sleek frictionless vision of computing science fiction has

promised us for decades. In this world, there are no phones, no laptops and no dedicated

personal computing devices. Instead, our environment is imbued with computers that

blend into the background and become ‘invisible’. One can interact with tables and

walls to perform common tasks that we would currently use a laptop or phone for.

Already we’re seeing ‘Internet of Thing’ devices permeating our environment. However,

they have been uninspired compared to this vision, in large part limited to

Internet-connected sensors and appliances, such as smart speakers, smart fridges, etc.

They don’t combine to create the greater whole we envisioned and are plagued by

usability, reliability, security and privacy issues. Mark Weiser talked about this vision,

coined ‘ubiquitous computing’ in the late 1980s [69]. 30 years later it is yet to be

realised, but the hardware and software required to support this vision have made great

strides in recent decades, such as small energy-efficient embedded computers, machine

learning models for tasks gesture recognition, and augmented reality headsets.

Mark Weiser also referred to ubiquitous computing (ubicomp) as ‘embodied

virtuality’, as he considered virtual reality as diametrically opposed to his vision.

Augmented reality, however, is aligned with the principles of ubicomp; rather than

aiming to create a replacement for the real world, instead augments it with computing.

Consider, if you could intuitively interact with these ‘invisible’ computing devices in

your physical environment through an AR interface. If you could dim the lights at a

glance, monitor and control what devices are recording information, and interact with

the virtual world embedded in our physical world directly.

In this dissertation, we argue the thesis that:

We have the hardware and software to support low latency augmented

reality interactions, but the current network architecture is inadequate to

support interconnecting them. We need a Spatial Name System that can map

physical device locations to network addresses to overcome this limitation and

unlock the potential of augmented reality.
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Chapter 1. Introduction

The Internet and its associated systems have been developed in the IETF with the

principles of ‘rough consensus and working code’. This has been extremely successful in

getting working systems that people can benefit from in a timely manner, but it also

means that systems aren’t designed with a view to the long term. Additionally, due to

protocol ossification — the difficulties in changing and modifying established standards

— the Internet is slow to evolve. Combined, these factors mean that systems are used in

ways they aren’t designed or suitable for.

Looking at one particular component of the Internet architecture, the Domain Name

System (DNS), can illustrate our point. The DNS is a global hierarchical naming system

used to name devices in the Internet by translating human-readable domain names to IP

addresses used for identification and routing. While this is effective in resolving names for

remote devices across the Internet with administration delegated to various organisations,

it is a poor fit for naming proximate physical devices. It adds latency to requests, is slow

to update, and has security and privacy implications.

This project will consider the systems support required for the use case of an AR

interface into ubicomp, namely meeting the low latency requirements for naming

physically proximate machines in the Internet, as well as a way to name devices based

on their location. The main artefact of this dissertation is the justification for, and the

design of, an alternative naming mechanism to the DNS that is native to ubicomp, the

Spatial Name System (SNS). This protocol uses a unique identifier ubicomp devices

already have, their physical location. It acknowledges the physicality of devices and

aims to provide low latency resolution to network addresses, along with considering

privacy and security concerns that weren’t present in the original DNS design.

We continue this dissertation in Chapter 2 with necessary background material to

justify ‘We have the hardware and software to support low latency augmented reality

interactions, but the current network architecture is inadequate to support

interconnecting them.’ as well as the technologies that will enable our Spatial Name

System. In Chapter 3 we will examine the work done towards creating an AR interface

into the world of ubiquitous computing to justify to the claim ‘We need a Spatial Name

System that can map physical devices to network addresses to overcome this limitation

and unlock the potential of augmented reality.’ The deficiencies found in the existing

network architecture will be explored in chapter 4, and an alternative proposed.

Chapter 5 will relate this design to existing work, and we will conclude with chapter 6.
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CHAPTER 2

Background

We continue this dissertation in Chapter 2 with background material necessary to

justify the claims that ‘We have the hardware and software to support low latency

augmented reality interactions’ (§2.1), and ‘but the current network architecture is

inadequate to support interconnecting them’ (§2.2), then conclude with an overview of

relevant technologies that will enable our Spatial Name System (SNS) (§2.3).

2.1 Ubiquitous Computing

Weiser’s compelling vision of ubiquitous computing (ubicomp) envisioned a world where

computers are available throughout a physical environment, but they blend into the

background and are effectively invisible to the user [69]. He compared this to the

technology of writing which permeates our environment in industrialized countries —

such as in signs, billboards, packaging and labelling — and conveys information at a

glance without requiring constant attention. Ubicomp devices would augment our

environment and allow us to focus on other things, instead of demanding even more

attention like our current mobile personal devices like smartphones and

smartwatches [71]. Figure 2.1 shows a picture of Weiser and colleagues demonstrating

their vision of ubicomp with the technology available at the time.

2.1.1 The Internet of Things

The Internet of Things (IoT) is a modern interpretation of ubicomp that imagines a

vast network of ‘smart’ devices all connected via the Internet such as appliances like light

switches, thermostats, stereos, ovens, fridges and smart plugs. Some commercial examples

are the Alexa Smart Speaker, Google Home suite and Ring security system. These devices

all have something in common: they primarily rely on Internet communication. Google

Homes cannot function without connectivity to remote datacentres; there are webpages

listing hundreds of security cameras hacked via their remote access functionality; and

generally IoT devices, as their name suggests, are reliant on the Internet.
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Chapter 2. Background

Figure 2.1: Weiser’s ubicomp demonstration in 1999 [70].

In chapter 1 we claimed that IoT devices are ‘plagued by usability, reliability, security

and privacy issues’, which is due to their reliance on Internet infrastructure. Regarding

usability, often the interface to these devices is through an application on a smartphone,

which is almost the antithesis of Weiser’s vision of making computers invisible. To address

reliability, communication over the Internet is inherently unreliable due to its best effort

delivery method. Congestion control adds reliability on top of this unreliable substrate,

but connectivity issues often still occur due to congestion issues, remote data centre

failures and configuration changes like Meta’s (formerly Facebook) BGP/DNS failure last

year. And finally, security and privacy are of utmost importance with ubicomp devices

due to their pervasive nature. Communicating sensitive data to remote data centres

relinquishes privacy to the provider, but also adds another attack vector for malicious

actors. Just connecting devices to the Internet has serious implications for privacy and

security [60].
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Chapter 2. Background

Part of the reason for these problems is the architecture associated with IoT devices,

like relying on remote data centre processing. But digging deeper we argue the reason

for these architectures is because of the inadequacy of the existing infrastructure and the

lack of a viable alternative. This has resulted in a divergence from Weiser’s original vision

which focused on user interaction and local communication. Why should ubicomp require

Internet connectivity in order to do something that by all accounts only needs to work

locally when it has so many negative effects? Instead, we can remove the Intenet-centric

design of IoT devices in order to better realise the original vision of ubicomp [39].

Considering the drawbacks of the Internet of Things, in this dissertation, we shall

consider how we can better design alternative systems to better support ubicomp. For

devices that transmit and display information directly, like devices with screens, Weiser

identified two issues of crucial importance: location and scale. He said that ubiquitous

computers must know where and what they are in order to adapt their behaviour in

significant ways without requiring any more sophisticated techniques like artificial

intelligence [70]. We would extend this argument to say that location and scale are also

important for ubicomp devices in order for people to be able to interact with them

directly without awkward in-betweens like using an app on a smartphone. We will

explore the role location can play not just in informing devices of their environment, but

also in how to identify devices based on their location with the SNS in chapter 4.

2.1.2 Augmented Reality

While the hardware developments we have been covering so far have been devices directly

relating to ubicomp, other developments have taken place in virtual and augmented reality.

Zuckerberg has staked Meta’s future on his vision of the Metaverse, a term coined by

Stephenson in 1992 [56], with a heavy reliance on virtual reality (VR) with their Quest

headset series. Weiser considered virtual reality to be ‘diametrically opposed to [their]

vision’ as it ‘attempts to make a world inside the computer’. He said:

Indeed, the opposition between the notion of virtual reality and ubiquitous,

invisible computing is so strong that some of us use the term ‘embodied

virtuality’ to refer to the process of drawing computers out of their electronic

shells. Weiser, 1999 [70]

However, augmented reality (AR) provides an opportunity to realise this vision of

embodied virtuality. This is fundamentally different from VR which tries to replace the

real world with a virtual one. Augmented reality could provide an interface into the

world of ubicomp — bringing the invisible computers into the visible for the purposes of

interaction [51]. Imagine if you could control devices with gazes and gestures, instead of

clunky and inconvient touchscreen displays. If you could monitor the digital

infrastructure in your environment - see what is recording your audio, what the heating

policy is, and which physical devices have hidden computers inside them. If you could
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Chapter 2. Background

Figure 2.2: Microsoft’s augmented reality headset the HoloLens 2 [28].

obtain telemetrics for devices This could be for the purposes of control, monitoring

telemetrics, or just for passively gathering information.

Microsoft has recently released the HoloLens 2, an AR headset that projects virtual

’holograms’ in front of the user’s vision. AR hardware is still in its infancy; as can be

seen in figure 2.2 the headset is rather bulky and it has a limited FOV of 52 degrees.

Microsoft is mainly targetting industrial use cases with this headset, but there is renewed

interest in AR across the industry, with Apple and Meta purportedly developing their

own hardware. Perhaps this hardware will develop into something unobtrusive, similar to

a normal pair of eye-correcting glasses.

One requirement of AR compared to traditional user interfaces is the demand for

low latency interaction [13]. In order for interactions to feel natural ubicomp interaction

requires low latency in the order of milliseconds, rather than delaying for seconds that

we’re used to with modern Internet applications on mobile devices. Communication over

the Internet adds latency to the operation of ubicomp devices. For example, DNS queries

may result in multiple iterative requests being made.

An alternative mode of identifying devices visually to the SNS would be to use visual

tags like quick response (QR) codes [54]. But this has a few disadvantages: devices need

to be large enough to fit a QR code; lighting conditions can affect resolution; they are

static once created; and they are aesthetically unappealing, which may be permissible in

an industrial environment but is not desirable in a home environment.

In summary, we have the hardware and software, in the form of augmented reality

headsets and ubicomp devices, to support low latency augmented reality interactions.

However, to network these devices, we argue the current Internet architecture is

inadequate.
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Chapter 2. Background

2.2 Internet Architecture

We have claimed that the current network infrastructure is inadequate to support our

vision of an AR interface in the world of ubicomp. In this section, we will justify this

claim by considering existing protocols that would be candidates for networking our AR

interface.

Consider the simplest possible scenario for this interface: connecting to a local smart

device from an AR headset. In this example, we only have two devices: one (the

headset) trying to resolve the network address of the other. At the lowest level of the

Internet protocol suite, we need a Media Access Control (MAC) address for link layer

communication technologies like Ethernet, IEEE 802.11 (Wi-Fi) and Bluetooth.

2.2.1 The Address Resolution Protocol

The Address Resolution Protocol (ARP) resolves link layer MAC network addresses to

Internet Protocol (IP) addresses. One may consider why not implement a ’Spatial

Resolution Protocol’, resolving spatial coordinates to MAC addresses. Such a system

would not provide the flexibility required for ubicomp, as it would only work on a local

network or ARP-bridged LANs. While devices may be physically proximate, they may

be using a variety of network connectivity such as different IEEE 802.11 networks,

Bluetooth, LoRa, or Zigbee. Our communication could be happening within a physical

space using disparate network technologies. The physical and network topologies might

not necessarily overlap. Therefore, we need a way to refer to devices higher level.

2.2.2 HOSTS.TXT

A naming system in the Internet associates names with IP addresses, like how IP addresses

are associated with MAC address with ARP but at a higher layer. The ARPANET, the

precursor to the Internet, did not have a standardised naming mechanism. Originally

each node or network maintained its own mapping of names to IP addresses, with no

mechanism for distribution or consistency. RFC 606 ‘Host Names On-line’ by Deutsch in

1973 [31] recognises this problem and proposes a centralized solution administered by the

Network Information Center (NIC), specifically Elizabeth J. Feinler, transmitted over the

File Transfer Protocol (FTP),

Now that we finally have an official list of host names, it seems about time

to put an end to the absurd situation where each site on the network must

maintain a different, generally out-of-date, host list for the use of its own

operating system or user programs. Deutsch, Dec 1973 [31]

However, the limitations of this solution are also acknowledged:
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Chapter 2. Background

I realize that there is a time-honored pitfall associated with suggestions such

as the present one: it represents a specific solution to a specific problem, and

as such may not be compatible with or form a reasonable basis for more general

solutions to more general problems. However, (1) this particular problem has

been irking me and others I have spoken to for well over a year, and it is

really absurd that it should have gone unsolved this Long; (2) no one seems

particularly interested in solving any more general problem.

Deutsch, Dec 1973 [31]

The next year, RFC 608 defines the server from which this ‘HOSTS.TXT’ file should be

downloaded from via FTP at ‘OFFICE-1’ (address 43) with username ‘GUEST’ and

password ‘ARPA’ [30]. One can still edit this file at /etc/hosts in a modern UNIX

system to override name resolution. However, this was an ad hoc solution to the

problem at hand and did not anticipate problems that would arise in later years, such as

authentication, privacy and, for our case, latency. Most imminently, however, was

scalability as the network rapidly grew. Standardization efforts and distribution

protocols could only take this centralized system so far and eventually this necessitated

the creation of the distributed Domain Name System.

2.2.3 The Domain Name System

The Domain Name System (DNS) is the hierarchical decentralized system that is the

solution to distributed naming in the Internet. In this context, hierarchical means that a

domain has subdomains that can be delegated to other authorities. Top-Level Domains

(TLDs), such as .com, .org, and .net are the highest level domains below the root

domain. Decentralised means that each delegated authority has an authoritative

nameserver(s). DNS resolvers follow the chain of delegation to find this. While DNS is

distributed and the administration is delegated, the system is still unified; relying on 13

root nameservers, or rather 13 root nameservers addresses, that return the authoritative

nameservers for the TLDs. In some ways, it is simply an iteration on the hosts.txt file

to ensure scalability.

Figure 2.3: IBM Personal Computer model 5150 [8].
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Figure 2.4: An example of the requests associated with a DNS lookup.

The computers for which the DNS was developed were heavy, large and static. The

IMB Personal Computer Model 5150, see figure 2.3, was released in 1982, the year before

domains names were published [18], weighting over 9kg. While DNS has been successful

in addressing physically remote computers belonging to an organisation over the Internet,

it is not an appropriate naming mechanism for physical devices.

First of all, there is a latency associated with making requests across the Internet which

is generally correlated with geographical distance. This is compounded by applications’

numerous sequential requests. See figure 2.4 for an example of the steps involved in a DNS

lookup. Caching is used to improve performance, but this has a tradeoff with freshness.

DNS updates take time to propagate through this distributed hierarchy. Setting time-

to-live (TTL) values is a delicate balance of request latency, server load and response

freshness. This is a problem for mobile devices that require both fresh and low latency

responses.

Communicating across the Internet also has reliability implications; in many cases, a

failure in DNS can appear as a failure in the network. Take Meta’s BGP/DNS failure last

year that was mentioned in section 2.1 [65]. Aside from the technical details (which are

interesting in their own right), this resulted in the situation that employees were unable

to physically access office spaces due to remote Internet architecture failures [59]. This is

a spectacular failure in ubicomp due to an overreliance on Internet architecture, but it is

not the only issue with DNS.

As mentioned, authentication and privacy been retrospectively fitted to DNS.

DNSSEC provides a set of security extensions to DNS to authenticate responses, so a

resolver knows that the response was signed by the holder of a private key. There is a

hierarchical authentication model with each zone relying on its parent zone to

authenticate it. The root domain is signed in a root signing ceremony, where 7 people
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Chapter 2. Background

from ICANN and other trusted Internet community members sign the root zone’s public

keying information. The trust in DNSSEC is derived from the security protocols put in

place around this ceremony. For privacy, DNS over TLS (DoT) / DNS over HTTPS

(DoH) can be used. However, deployment of these protocols is limitted, due to protocol

ossification. DNSSEC has a lot of overhead for our use case, and it relies on the security

of a remote system that we have no control over. Finally, DNS doesn’t provide a natural

way of naming ubicomp devices. Domain names were created for expressing hierarchical

organisational membership, but not for mobile local devices.

One could hack DNS for ubicomp naming, running a local authoritative nameserver,

but this would be bringing a lot of operational baggage required for distribution that is

not required locally as well as requiring infrastructure in the form of a server. Instead,

multicast DNS [10] (mDNS) is a solution for a decentralised (as opposed to distributed)

DNS system, created to serve Zero-configuration networking (zeroconf).

As networked devices become smaller, more portable, and more

ubiquitous, the ability to operate with less configured infrastructure is

increasingly important. RFC 6762 Multicast DNS, 2013 [10]

It provides the same APIs as DNS, but with a different implementation. Instead of

querying a nameserver, all participants communicate directly using IP/UDP multicast.

By default mDNS exclusively uses domains with the .local TLD. When a client queries a

domain it sends a multicasted query packet to a reserved multicast address. The response

is typically multicasted too, so other participants can cache the response. This means

that its scope is limited to a multicast domain, typically a local network, and not over

the Internet as a whole. Multicast DNS is extremely effective for local service discovery

but is better suited for service discovery than for low latency spatial communication.

There are a number of problems with mDNS for our use cases, (1) there is no

authentication, privacy considerations, or access control; (2) it only works within a

multicast domain; and (3) names are descriptive strings, and name conflict resolution

relies on programmatic updates, which doesn’t provide a reliable or intuitive interface

for ubicomp devices.

To summarise, we have considered the existing address resolution and naming

architectures ARP, HOSTS.TXT, the DNS and mDNS. However, none of these meets the

needs of our AR interface due to internetworking, latency, reliability and naming

requirements. Instead, will consider how a Spatial Name System (§4) can be designed

to meet these needs using devices’ physical locations.
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Chapter 2. Background

2.3 Local Positioning Systems

Weiser said that ‘today’s computers’ (computers of 1999) had no idea of their location

or surroundings [70]. This is not quite true in 2022, with global navigation satellite

systems (GNSS) — like GPS or GLONASS — capable smartphones and wearables fitted

with an array of sensors including magnetometers. Applications can also infer location

from IP addresses and WiFi access points (AP) which are associated with geographical

coordinates. However, the precision and accuracy of this association are limited. And

GPS has limited accuracy indoors and in dense urban areas [58]. Centimetre location

accuracy is still lacking in most modern devices.

There are a number of indoor positioning systems available [58, 49], such as the

Cambridge Computer Lab Active BAT system in the early 2000s [26]. This system

provides sufficient accuracy for locating ubicomp devices; ‘95% of readings are within

9cm of their true positions’ [26]. Figure 2.5 shows measured Bluetooth signal strengths

with varying location, where the location was obtained from the Active BAT

system [38]. The Bluetooth signal strengths are not of interest to us, but the accuracy of

tracking mobile devices in the Active BAT system is demonstrated in this work. To

make devices self-aware of their location a beacon associated with one of these local

positioning systems could be used. This live location tracking would allow devices to

auto-configure their location and support mobile devices (§4.4.2). However, these

systems are very expensive to install; statically surveying immobile devices will also

work. In essence - telling devices their location instead of making them location-aware.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Mean Bit Error Rate (%)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Standard Deviation

Transciever

Transciever

Scale (m)

0 1 2 3 4 5

Scale (m)

0 1 2 3 4 5

Figure 2.5: Measurement of Bluetooth signals strengths (top) and the standard
deviation (bottom) using location from the Active BAT system in the Cambridge

Computer Lab first floor north corridor [38]
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2.4 Summary

We began this chapter by discussing Weiser’s vision of ubiquitous computing (§2.1),
describing where we have been led astray with the Internet of Things (§2.1.1), and

describing how augmented reality relates to this vision as embodied virtuality (§2.1.2).
We then how the current Internet infrastructure is inadequate for our vision of an

augmented reality interface into the world of ubicomp (§2.2), describing address solution

mechanisms (§2.2.1), how the current naming system came to be (§2.2.2), and why the

DNS is insufficient (§2.2.3). We concluded with a summary of local positioning systems

as an enabling technology for our Spatial Name System (§2.3).
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CHAPTER 3

Augmented Reality Interface

This chapter will test the thesis that ‘We have the hardware and software to support low

latency augmented reality interactions’. We will describe the technologies selected (§3.1),
explore how to develop for augmented reality (§3.2), and evaluate our experience trying

to network the HoloLens for an Augmented reality interface (§1), justifying the claim

‘We need a Spatial Name System that can map physical devices to network addresses to

overcome this limitation and unlock the potential of augmented reality’ (§3.3).

3.1 Hardware and Software

In this section, we will describe the hardware and software artefacts chosen to advance

the thesis ‘We have the hardware and software to support low latency augmented reality

interactions’.

The state of the art hardware for augmented reality (AR) is the HoloLens 2 (§2.1).
The HoloLens 2 was released by Microsoft in 2019 as a successor to its original HoloLens

headset from 2016. Its main focus is on the commercial market, including

manufacturing, engineering, healthcare and education — perhaps due to its $3,500 price

tag. To develop applications towards these ends, 2-dimensional applications are

supported through the Universal Windows Platform (UWP); UWP also supports other

platforms running the Windows Operating System like desktops, laptops and tablets.

But the primary supported development environment for the headset through game

engines for 3-dimensional applications including Unity and Unreal. We choose to

develop with Unity as it’s been supported for the longest and has the best introductory

documentation. It is possible to program directly using DirectX and Windows APIs, but

this is a significant amount of work [63].

The development experience using these game engines is very similar to that of VR.

In fact, Microsoft describes the headset as mixed reality (MR), as opposed to virtual or

augmented reality. MR refers to a hybrid of VR and AR, a term introduced by Milgram

in his reality–virtuality continuum which describes the spectrum(s) between virtual and

augmented reality [43]. Whereas VR is entirely virtual with no interaction with the

20



Chapter 3. Augmented Reality Interface

Figure 3.1: A person playing the Cubes game on the HoloLens 2.

physical world, and AR overlays the physical world with a virtual interface, MR combines

both. Our motivation for using this device is for an AR interface, however.

In order to test the thesis ‘We have the hardware and software to support low latency

augmented reality interactions.’ and profile AR’s latency requirements, we created an

application for the HoloLens in Unity [22]1. what are the latency requirements? As Unity

is first and foremost a game engine, we created a game. The purpose of this game was

to explore development for the HoloLens to see if our thesis is justifiable. This game is

particularly suited to explore low latency interaction, it’s an ‘infinite runner,’ requiring

the player to dodge cubes at speed. A player’s view, and a view of the player, can be seen

in figure 3.1. A web version is available to play [21].

3.2 Augmented Reality Development

In this section, we’ll explore the development experience for augmented reality to test

our thesis. We will describe the development process to program a 3D project for the

HoloLens (§3.2.1), the control mechanism we added to our game for MR (§3.2.2) and

attempt to hack (in the original, positive, definition of the word [24]) the operating system

of the HoloLens (§3.2.3).

1The game was ported VR and AR from an existing game written by the author [67].
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3.2.1 Development Process

To being, we downloading Unity Hub with Unity 2020.3.x/2019.4.x. Unity, a game

engine, was launched in 2005 to make game development more accessible. It originally

only supported Mac OS X but expanded into other platforms, and now supports

Windows Mixed Reality. Development is done through a GUI editor where the user can

create and edit objects, as well as program scripts primarily in C#. Unity editors are

installed through the Unity Hub, as well as Unity packages. There are additional

dependencies to develop a HoloLens application, as documented on the Microsoft Mixed

Reality documentation. [62]. This includes Windows 10 SDK 10.0.18362.0 or later, the

.NET Desktop Runtime 5.0, Visual Studio 2022 with associated ‘workloads’, and the

Microsoft Mixed Reality Toolkit (MRTK) package. Unity additionally requires the

Universal Windows Platform Build Support module and Mixed Reality Feature Tool.

Windows 10 or 11 are the only supported operating systems.

(a) Unity development environment.

(b) Configuring remote execution in Visual Studio.

Figure 3.2: Developing for the HoloLens in Unity (left) and Visual Studio (right)
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Figure 3.3: A person developing for mixed reality in mixed reality:
wearing the HoloLens while programming it.

The game is developed in Unity with the MRTK package. This development kit

provides an API to use from within Unity, in the form of Unity scene objects,

components and APIs. As shown in figure 3.2a, the Unity editor is a GUI where scenes

are manipulated, objects are added to scenes, and components are added to objects.

Components add functionality to objects, like physical interactions, cameras to view the

scene from, or through user-defined scripts. More details about development with Unity

can be found through the Unity documentation [66], but suffice to say programming for

the HoloLens is similar to programming any other game, but with additional APIs

models and interaction models. While MRTK can target Windows Mixed Reality,

OpenXR is a more portable and open platform.

OpenXR is an open and royalty-free standard for virtual and augmented introduced

in 2019 by the Khronos Group consortium (including Google, Apple, ARM, Intel,

Qualcomm, AMD, NVIDIA, Huawei, Epic Games, Valve and Ikea). XR refers to

extended reality — encompassing all of Milgram’s reality–virtuality continuum [43].

From Unity, with an OpenXR target, the project is built into a Visual Studio project.

Visual Studio is Microsoft’s IDE for Microsoft software platforms like Win32 API,

.NET and UWP. To build the project in Visual Studio, the target architecture is ARM64,
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as the HoloLens contains an ARM Qualcomm Snapdragon 850 [28]. Once the target

architecture is set, and the startup project is configured, the game can be built and run

on the HoloLens. Visual Studio supports this over the network or through a USB-C

cable. Figure 3.2b shows the configuration of the IP address for the remote execution of

a project for the HoloLens; figure 3.3 shows an example of developing in mixed reality

using a USB-C cable. We sideloaded the game onto the headset through this process.

Once installed the program can be played offline. Note that this is ‘compiled’ and not

‘interpreted’; it is not possible to develop live on the headset currently.

In summary, the development cycle is a 2 step process, consisting of building a Unity

project to a Visual Studio project, and building from the Visual Studio project to the

HoloLens. While the development process is primarily done through GUIs and is

supported platforms are constrained to Microsoft’s ecosystem, we can say that ‘We have

the hardware. . . to support low latency augmented reality interactions’.

3.2.2 Mixed Reality Control

C#1 float targetX = camera.localPosition.x * headsetMovementMultiplication
+ targetXOffset;

2 float xDiff = targetX - transform.position.x;
3 // exponential velocity curve
4 float xVelocity = (float) (1 - Math.Pow(xDiff / maxXDiff + 1, -2)) *

maxXVelocity;
5 Vector3 velocity = body.velocity;
6 velocity.x = xVelocity + horizontal * maxXVelocityController;
7 body.velocity = velocity;
8
9 // If controller other than headset being used add offset to compensate
10 if (horizontal != 0) {
11 targetXOffset = transform.position.x;
12 }
13
14 Vector3 cameraPosition = transform.position + cameraOffset;
15 cameraPosition.x = targetX - camera.localPosition.x;
16 camera.parent.position = cameraPosition;

Figure 3.4: Movement code for the HoloLens Cubes game using the MRTK APIs.

There are a number of interaction models supported by MRTK, including using hands

and motions, voice, or ‘gazing’ (interacting with the user’s eyes). While all of these

will be extremely useful in providing an intuitive interface for the AR interface, they

are unnecessary for our game. Previously, the game was controlled through a keyboard;

the player used the arrow keys to move the blue player cube. Touch controls were also

included for mobile devices. However, neither of these control mechanisms is suited to

AR. Instead, a natural control method for a user with a headset is the headset’s location.

The MRTK API exposes a camera object representing the headset, which is updated in

the game engine as the user moves. This can be accessed by a script in order to move the

player object accordingly. Figure 3.4 shows MR-specific movement code for the player

object.
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Line 1 sets the target X position of the player to the headset position is obtained

from camera.localPosition with camera being set to the appropriate component from

the Unity editor. The movement of the headset was scaled down by a factor of 20 with

headsetMovementMultiplication as the game world operates in meters squared cubes,

which turned out to be too far for to player to move to react in time to oncoming cubes.

With the game’s platform, the white base visible in figure 3.2a, having a width of 15

meters, this means the user moves within a 75cm area.

The targetXOffset is used to support control mechanisms other than the location

of the headset, for debugging. This could be a keyboard, or gamepad, connected to

the headset via Bluetooth. We need to apply an offset based on this input or else the

targetX will always be entirely be determined by the headset’s location. We set the value

of targetX in lines 9 – 12 based on horizontal input obtained from:

C#void Update() {

horizontal = Input.GetAxis("Horizontal");

}

This is separated from the previous code, which is in the Update method, as the

Update method is run at a fixed rate once per frame, whereas the FixedUpdate is called

at fixed intervals independent of the game’s framerate. Conflating these can lead to

strange results.

Once we have the targetX position, we don’t move the player object there directly,

as the location of the camera can be rather jerky, it felt unnatural to have the cube

follow the player directly. Instead, we calculate the distance between where the player

is (transform.position.x) and where they are going targetX as xDiff. On line 4 we

then calculate an exponential velocity curve to move the player towards that location:

xVelocity =

(
1−

(
xDiff

maxXDiff
+ 1

)2
)

∗ maxXVelocityController

We apply this velocity along with the input from another controller, horizontal *

maxXVelocityController, on lines 5–6.

Lines 14–16 update the camera position to support scaling the player movement

down with headsetMovementMultiplication by applying an offset to the camera

object’s parent.
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3.2.3 Holographic Terminal

To explore lower level interaction with the HoloLens, like using mDNS resolution, we

attempted to get a command line interface on the device. Combined with a Bluetooth

keyboard this could be used to interact with ubicomp devices instead of using polished

gesture controls, of potentially great interest to the technically competent and for

operations that fall outside standard use cases. The Windows Terminal is a modern

terminal emulator that supports the Windows command prompt, powershell and

Windows Subsystem for Linux [72]. The de-factor standard terminal emulator for

Windows was a natural choice to use for the HoloLense 2. And the original HoloLens

supported the Windows Terminal [73].

However, one cannot install the application from the Windows store, as the

application’s target platform is Windows.Desktop. After trying and failing to get the

Windows Terminal built locally [19], we used the MSIX Packaging Tool [20] to change

the target platform to Windows.Desktop. However, after sideloading the MSIX file,

launching it on the HoloLens failed. It turns as the HoloLens uses an ARM architecture

the Win32 API isn’t supported. The Windows terminal uses XAML islands to support

UWP, but this is really just for graphical components to ensure uniformity on the new

Windows versions and it still uses Win32 under the hood [29]. The original HoloLens

supported the Win32 API and by extension the Windows Terminal as it contained an

x86 Intel Cherry Trail SoC.

One can use a remote shell through the included Edge browser, like the Cambridge

Student Run Computing Facility’s (SRCF) hosted Shell In A Box. A Bluetooth keyboard

is useful to avoid having to type on a holographic keyboard — which is very futuristic, but

Figure 3.5: A view of overlaid virtual windows from the HoloLens.
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also very slow. Figure 3.5 shows an example of window management on the HoloLens with

this shell. The window management system is very impressive, with gesture control being

used to move and pin windows, despite being significantly less efficient and error-prone

than traditional peripherals or touchscreens. There is an anchor system that provides

an OS abstraction that persists windows and other objects in a room that the HoloLens

recognises. The device portal API also proved very useful in watching a real-time feed of

the user’s POV and providing help [25]. this

3.3 Interactivity Evaluation

We have shown that ‘We have the hardware and software to support low latency augmented

reality interaction’ in the form of a cutting edge AR headset, a development environment

for it, and tookits such as spatial mapping, hand tracking and interaction APIs. However,

we referred to the control mechanism we created as mixed reality control (§3.2.2).

This is because the mechanism does not fundamentally change between AR and VR,

it just uses different APIs. We discovered this from porting the game to the Meta Quest

2 VR headset, shown in figure 3.6. The only difference between our game in VR and AR

is that in the latter one can see the real world in the background. This allows one to,

say, drink a mug of coffee more easily while wearing it but their interaction models are

fundamentally the same.

However, we said that we want to use this headset for AR rather than MR (§3.1).
This brings us to the primary limitation in the interactivity of our game - it has not met

our goal of interacting with the real physical world.

There are spatial mapping APIs available for the HoloLens that allow us to overlay

virtual objects with knowledge of a room’s physicality topology. For example, there is

Figure 3.6: Meta’s virtual reality headset Quest 2 [50]
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an API to find good places to render virtual objects. But still, this is constrained to

an overlay of virtual objects that aren’t connected to the real world and is not fulfilling

the full potential of AR. Looking around the Microsoft store for applications for the

HoloLens, they are generally constrained to VR games overlaying the real world and 3D

rendering viewing of models, but nothing you can’t do better on a VR headset. To put

this in the context of Milgram’s reality–virtuality continuum, these applications are low

on the Extent of World Knowledge (EWK) spectrum [43]. Weiser referred to ubicomp

as embodied virtuality, to contrast it with virtual reality (§2.1). However, the MX of

the HoloLens is more similar to VR than this vision. There are interesting examples of

applications that go beyond this, like remote maintenance assistance, and there are many

visions of tying this into the real world, such as for monitoring industrial equipment. But

there is no killer app for AR yet.

Interaction with computation devices in the real world could be that killer app. While

there are numerous spatial APIs available with the HoloLens’s advanced array of sensors,

there is little such support for networking. Unity has support for networking games for

multiplayer. This includes a high level multiplayer API, but also a ‘low level’ transport

layer API that is implemented as a shim about OS sockets [64]. But there is limitted

support for local networking. It is possible to manually use UDP multicast for discovery,

designed for connecting games on a local network [42]. But it is obviously undesirable to

run Unity on resource constrained ubicomp devices, and this does not provide a naming

mechanism for physical devices. If we wanted to use mDNS, despite its issues (§2.2), we
would have to re-implement it in Unity. We might think mDNS support is something that

could be added to the OS through a userland package or kernel module, and windows do

indeed provide a DS-DNS (Discovery Service DNS - implemented on top of mDNS) API

for the Win32 API; but as we have discovered trying to build the Windows Terminal for

the HoloLens it does not support this API due to its ARM architecture [57]. We could

use the existing DNS infrastructure trivially with the Unity transport layer API, but it is

inadequate for our low latency, reliable, secure and private ubicomp use case (§2.2).

In summary, what we want to do is build a local AR application that can interface

with devices in the local environment. But the systems support required for this is just

not there. The Microsoft and game development ecosystem is not easy to do low level

systems work in. If we want these devices to succeed for use cases beyond those already

existing we need them to be as free and as open as possible, which is especially true as

they become part of our physical infrastructure and environment. However, the more

pressing issue is that the network support is inadequate. We have shown that we can

build low latency interaction applications locally on the HoloLens, but no appropriate

naming mechanism for the physical world. Therefore, ‘We need a Spatial Name System

that can map physical devices to network addresses to overcome this limitation and unlock

the potential of augmented reality.’ We will explore this system in chapter 4.
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3.4 Summary

In this chapter, we started by selected cutting edge augmented reality hardware and

software (§3.1). We then explored the development environment for augmented

reality (§3.2) using a Unity development environment to create a low latency

game (§3.2.1) with mixed reality controls (§3.2.2), and recounted our experience trying

to hack a holographic terminal onto the HoloLens (§3.2.3). We conclude with an

evaluation of the limitations we encountered trying to build an interactive interface with

networking on HoloLens that prevent us from realising our vision of an Augmented

Reality Interface and justify our Spatial Name System (§3.3).
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CHAPTER 4

Spatial Networking

In this chapter, we will test the thesis ‘We need a Spatial Name System that can map

physical device locations to network addresses to overcome this limitation and unlock the

potential of augmented reality’ by proposing a network architecture to map physical

device locations to network addresses. The ‘Spatial Name System’ (SNS) will overcome

the limitations of networking AR with the physical world and unlock the potential of

augmented reality (§3.3). In order for this system to work, we need to know the know

local positions of ubicomp devices. These locations can be obtained by using a beacon

with a local positioning system (§2.3) or for non-mobile devices by statically surveying

them (§4.4.2). Once we know where devices are locationed, we need a system to map

them to network addresses. We begin by describing the technologies used towards

achieving this end (§4.1), then explore a DNS resource record used to encode

location (§4.2), we will consider a spatial mapping system to resolve physical locations

to network addresses (§4.3), and propose an architecture for creating this system.

4.1 Technologies

Traditionally C has dominated systems programming. In the last 2 decades, we have

seen an increase in higher-level languages being used for lower-level programming, such

as Rust. As our SNS will be a critical part of the infrastructure in a context where

security and privacy are of the utmost importance, we care a lot about correctness and

safeness. For this reason, we will use the functional programming language OCaml,

which comes with a number of benefits [40, 41]. (1) Static type checking classifies

functions and variables into types and catches errors in the operations on these types at

compile time instead of run time. A language like C does not have as rich a type system,

relying on primitive types, structs and unions. Even arrays are simply pointers into

memory; the programmer has to make sure the data is being interpreted in the correct

way. (2) Garbage collection automatically manages memory preventing memory leaks.

Techniques like incremental and generational collection minimise the performance

impact of interruptions to the application. Manual memory management can still be
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done when required. (3) Modules and object-orientated features allow composable

components with well-defined interfaces.

We start our work towards the Spatial Name System by exploring the existing support

for location-based DNS in section 4.2. This was done in the OCaml DNS library, created

as part of the MirageOS project [46, 41]. In addition to the benefits gained from using

OCaml, this DNS stack is a lot more malleable than the alternatives. The most common

known DNS server on the Internet by far is Bind9 [55, 12]. Bind is written in C and dates

from the early 1980s. While lines-of-code (LOC) is not a perfect metric, and functional

code tends to be very expressive, the OCaml DNS implementation is significantly smaller

than the Bind9 server. The OCaml DNS server is 76,735 LOC compared to Bind9’s

373,578 LOC. This is 20% the LOC of Bind9. Note the LOC count included header

and interface files, and includes all libraries installed by the OCaml package manager

opam. Excluding these libraries, the OCaml DNS implementation is only 2,471 LOC.

Additionally, the OCaml modules system with well-defined interfaces allows existing code

bases to be modified much more conveniently than C.

Bash
$ find Bind9 -type f \( -name '*.c' -o -name '*.h' \) -exec cat {} + | wc -l

373578

$ find ocaml-dns -type f \( -name '*.ml' -o -name '*.mli' \) -exec cat {} + |

wc -l

76735

We mentioned that OCaml DNS was created as part of the MirageOS project [41].

Mirage is a library operating system that creates a small single address space operating

system targetting a specific architecture. This has benefits for safety and security, with

the whole kernel being type-checked. Dead code elimination means that built unikernels

are much smaller than an application dragging along an entire operating system with it.

Unikernels are compiled alongside their configuration, which means with

metaprogramming the compiler can optimize the application significantly. While mirage

was originally used to target virtualization environments like the Xen hypervisor [6], it

can also target bare-metal embedded systems including the Broadcom BCM2837 and

ESP32 Chip. Due to all these benefits, Mirage can benefit programming for ubicomp

and embedded devices immensely.

4.2 LOC Resource Record

Similar to how ARP resolves network addresses to MAC addresses, and DNS resolves

domain names to network addresses, SNS resolves locations to network addresses. While

DNS was original simply for resolving domain names to network addresses, its purpose

has expanded over the years with various resource records, such as MX records for

mailservers, SRV for generic service discovery, and PTR records for resolving IP
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addresses to domain names. DNS contains a mechanism for associating a domain name

with a physical location, the ‘LOC’ resource record (RR). Note this is LOC as in

location, not lines-of-code.

The LOC record was proposed in RFC 1876 ‘A Means for Expressing Location

Information in the Domain Name System’ [15], as a refinement of the earlier GPOS

record from RFC 1712 ‘DNS Encoding of Geographical Location’ [53]. It encodes

latitude, longitude, altitude, size of a referenced sphere, horizontal precision and vertical

precision.

There are a number of suggested uses proposed for the LOC record that shows its

RFC’s age. They include USENET geographic flow maps; a ’visual traceroute’ application

showing the geographical flow of IP packets, relying on routers responding to both IP

TTL timeouts and DNS LOC requests; and network management based using LOC RRs

to map hosts and routers. These visions have not been realised in practice, for security

and privacy reasons, as well as a lack of a real use case. They have limited real-world

usage and no practical use that we are aware of, generally relegated to easter eggs [61].

However, our Spatial Name System is a practical case for using location information

in a naming system. While the LOC record is a mechanism for global positioning rather

than local positioning, using this existing record could save adding an additional location

encoding resource record. For these reasons, we implemented this record in the OCaml

DNS library.

First, we added a new module LOC to src/dns.mli (figure 4.1).

OCamlmodule Loc : sig

type t = {
latitude : int32;
longitude : int32;
altitude : int32;
size : int;
horiz_pre : int;
vert_pre : int;

}
(** The type of a Loc record. *)
...

end

Figure 4.1: Loc module type for LOC resource record.

With OCaml’s module system and non-exhaustive pattern matching check, we could

then find all the cases where we needed to modify the code base. Most of these cases were

trivial but some required special treatment, such as printing the record:

OCaml| Loc, (ttl, locs) ->

Loc_set.fold (fun loc acc ->

Fmt.str "%s\t%aLOC\t%s" str_name ttl_fmt (ttl_opt ttl) (Loc.to_string loc)

:: acc)

‘locs []
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4.2.1 Parsing

DNS records are generally created by listing them in a zone file associated with a zone.

These records can be for the zone origin, or any subdomain in the zone. The LOC resource

record has a relatively complicated zone file format:

The LOC record is expressed in a master file in the following format:

<owner> <TTL> <class> LOC ( d1 [m1 [s1]] {"N"|"S"} d2 [m2 [s2]]

{"E"|"W"} alt["m"] [siz["m"] [hp["m"]

[vp["m"]]]] )

(The parentheses are used for multi-line data as specified in [RFC

1035] section 5.1.)

where:

d1: [0 .. 90] (degrees latitude)

d2: [0 .. 180] (degrees longitude)

m1, m2: [0 .. 59] (minutes latitude/longitude)

s1, s2: [0 .. 59.999] (seconds latitude/longitude)

alt: [-100000.00 .. 42849672.95] BY .01 (altitude in meters)

sizz, hp, vp: [0 .. 90000000.00] (size/precision in meters)

An example LOC record value is:

52 12 40.4 N 0 5 31.9 E 22m 10m 10m 10m

The C code that the RFC helpfully provides lexes, parses and encodes this in one

step. The lexing consists of splitting the input into tokens; the parsing extracts values

from these tokens according to their syntax; and the encoding consists of converting the

human-readable representation into a format for transmission on the wire. While this is

efficient, it is also less composable and more error-prone than separating these steps. We

will use the libraries ocamllex and ocamlyacc, which replace the venerable lex and yacc

respectively, to implement this parsing in OCaml. Functional languages are well suited to

the task of parsing due to features like pattern-matching and good support for recursion.

Parsing can be described as analysing a string of tokens according to the rules of a

formal grammar. We can describe the LOC record format as a context-free grammar using

an extended BNF notation [5]. In the extended syntax, we represent terminals as term,

literals as literal, alternation with {term1 | term2}, optional elements as [optional],

elements which must occur one or more times as (term)+, and whitespace consisting of

spaces and tabs with <space>.
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type loc ::= <space> deg min sec {N | S}
<space> deg min sec {E | W}
<space> meters

<space> meters

[<space> meters [<space> meters]] ;

deg min sec ::= integer [<space> integer [<space> integer [. [integer]]]] ;

precision ::= meters

meters ::= [-] integer [. [integer]] [m] ;

integer ::= (0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)+ ;

In practice, it was more complicated to implement than this grammar would suggest.

One issue was having to interact with the existing parsing for the rest of the records.

Using m as a token proved problematic. Take an example instance of the meters term as

0m. This can be lexed as an integer and m, but it can also be lexed as a generic charstring

0m. The way ocamllex deals with ambiguity is by taking the longest match as a winner.

In this case, that would be the charstring. We could modify the charstring to ignore

strings beginning with a digit, but then we couldn’t tokenise a generic string starting

with an integer. This would break any domains starting with a number [9].

Instead, we used a regex to tokenise the whole meters term at once. However, the

ocamllex’s ambiguity resolution foiled us again. IPv4 addresses are tokenized as a series

of integers and dots (.); for example, 192.0.2.0. As the longest match wins, the meters

term with an optional m will match 192.0 and break the lexing for the IP address. To

resolve this we took a hybrid approach between lexing and parsing. We tokenized:

meters ::= [-] integer [. [integer]] m ;

Note the mandatory m). The other cases, where m doesn’t occur, were matched in the

parser by using integer, ., and - tokens.

Once we had these tokens, we had to evaluate them as numeric datatypes. We wanted

to avoid using any floating point numbers as they can be imprecise, require converting

to another representation for packing them on the wire, and there are issues using them

in-kernel as MirageOS unikernels do: how they are handled varies by architecture and it

requires enabling the floating-point unit. Instead, we parsed the float to the number of

decimal places specified in the RFC: 3 decimal places for seconds latitude/longitude, and

centimetre accuracy (2 decimal places) for meter measurements.
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4.2.2 Encoding

Once we lexed and parsed the input, we then needed to translate it to the on the wire

format. The format of the record is:

MSB LSB

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

0| VERSION | SIZE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

2| HORIZ PRE | VERT PRE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

4| LATITUDE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

6| LATITUDE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

8| LONGITUDE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

10| LONGITUDE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

12| ALTITUDE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

14| ALTITUDE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

(octet)

Where one line is 2 octets, where an octet is 8 bits, and the overall size is 16 bytes if we

consider a byte to also be 8 bits. The SIZE, HORIZ PRE, and VERT PRE fields are only 8

bits each but represent values up to 9 ∗ 109cm. This is done by using the first 4 bits as

a mantissa (the base), and the next four bits as the exponent (the power of 10 by which

to multiply the base). OCaml’s strong tying and boxed types proved invaluable for this

encoding, but this did required implementing integer exponentiation recursively:

OCamllet exponent =

let rec r = fun p e ->

if e >= 9 then 9 else

if p < (pow10 (e + 1)) then e else

r p (e + 1)

in

r p 0

To encode the latitude and longitude, the sexagesimal (base 60) degrees - degrees,

minutes and seconds - had to be converted to thousandths of a second of arc; that is,

milliarcseconds (mas). The on the wire format was then simply the 32-bit representation

of this integer:

OCamllet lat_long_parse ((deg, min, sec), dir) =

let ( * ), (+) = Int32.mul, Int32.add in

(Int32.shift_left 1l 31) + (

(((deg * 60l) + min) * 60l) * 1000l + sec

) * if dir then 1l else -1l

Conversion to decimal degrees can be done by multiplying this milliarcsecond value

by 60 ∗ 60 ∗ 1000.
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Finally, to encode the altitude, we simply subtracted 100000m from it, in order to

represent the range of values -100000.00 – 42849672.95m. Note the maximum value

represented by an unsigned 32-bit integer is

4284967295 + 10000000 = 4294967295 = 232 − 1

This means we can represent objects at an altitude of 40,000km. For reference, the

International Space Station orbits at 400km.

While encoding the altitude was the simplest of all the fields, decoding it was the

most troublesome. OCaml does not have inbuilt support for unsigned types. There is

an ocaml-integers library providing this functionality, but it requires adding another

dependency and pulls a fair amount of C along with it. Instead, we manually converted

it to an int64 by compensating for the subtraction of 232 if the 32nd bit is 1 when

interpreting an unsigned 32-bit integer as a two’s compliment number.

OCaml(* convert a uint32 alt to an int64 *)

let alt = if alt < 0l then

Int64.of_int32 alt + Int64.shift_left 1L 32

else Int64.of_int32 alt

4.2.3 Testing

We performed extensive testing on the LOC record’s parsing, printing, encoding and

decoding. To test parsing and printing, test records were printed and compared to what

was expected. The expected printing wasn’t always what was parsed due to optional

terms or if redundant precision was given, like 0.00 altitude being printed as 0m. Notice

from the internal representation of the Loc module (figure 4.1) that all the values are

stored in their on the wire format. We did this to ensure what was printed from a record

was the same as what will be transmitted on the wire.

To test the packet decoding, the binary format of a LOC record query was dissected

and annotated (figure 4.2). We checked compared against reference binary formats

obtained from $ tcpdump -X -n port 53 and using dig loc <existing domain>

where <existing domain> is a domain controlled by the author running Bind9. In an

indirect way, this is essentially reverse engineering Bind9.

While the RFC’s textual description was helpful, it provided invaluable to read the C

code to get the exact details of how to encode fields. Even still, mistakes were made that

were only caught by extensive testing. There is work towards formalising RFCs in the

proof assistant Coq, which could have proved very useful in this case [3].
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OCaml(* RFC1035 section 4.1 *)
(* header *)
"11 11 81 80 00 01 00 01 00 00 00 00" ^
(* question *)

(* example.com *)
"07 65 78 61 6d 70 6c 65" ^ (* example *)
"03" ^ (* dot *)
"63 6f 6d" ^ (* com *)
"00" ^ (* \0 - null terminated *)
(* QTYPE = 29 = LOC *)
"00 1d" ^
(* QCLASS = IN ‘*)
"00 01" ^

(* answer *)
"c0 0c" ^
(* binary: 11000000 00001100
first 2 11’s indicate a pointer
000000 00001100 = 12
this gives the size of the header as an offer, pointing to the domain in the
query
*)
"00 1d" ^ (* TYPE = LOC *)
"00 01" ^ (* CLASS = IN *)
"00 00 0e 10" ^ (* TTL = 3600s *)
"00 10" (* RDLENGTH = 16 *)

Figure 4.2: Anatomy of a DNS LOC query answer.

4.3 Spatial Resolution

With our newly implemented DNS LOC record, we can resolve domain names to physical

locations. But there are two problems with this record for our use case: (1) it gives a

global position, not a local position; (2) it resolves domain names to physical locations,

but we want to resolve physical locations to network addresses.

Regarding point (1), our highest precision is 0.001 arcseconds, or 1 milliarcsecond,

which corresponds to approximately 2.7 ∗ 10−7 decimal degrees. This is precise to

approximately 30 centimetres at the equator and about 10 centimetres at 67°N. This is

just outside the centimetre precision we would want for small ubicomp devices.

Additionally, with ubicomp devices, we may not know the global position of devices but

just their local relative positions. We could ‘hack’ the record to sacrifice global

positioning for higher precision local positioning, reinterpreting latitude and longitude

as x and y coordinates; as at the local scale, the curvature of the Earth won’t affect our

resolution. But then we would then be constrained to using a record ill-suited to our

needs and would break compatibility with other systems using the LOC record anyway.

37



Chapter 4. Spatial Networking

To address point (2), the PTR record can be used to perform a reverse DNS lookup,

resolving an IP address to a domain name [17, 34]. This is done with the IN-ADDR.ARPA

domain. For example, 0.2.0.192.IN-ADDR.ARPA should resolve to the domain(s) that

point to 192.0.2.0. Conceivably, we could do a similar reverse lookup to associate a

location with a domain name, which could then be resolved to a network address as

normal. However, using DNS would have implications for latency, reliability, security and

privacy (§2.2.3). Instead, we could try and modify mDNS to support this lookup. This

would have the advantage that we wouldn’t need to worry about modifying remote server’s

DNS stacks, we could just update end-host ubicomp devices. And it would address our

issue with mDNS, ‘names are descriptive strings, and name conflict resolution relies on

programmatic updates, which doesn’t provide a reliable or intuitive interface for ubicomp

devices’ (§2.2.3). However, we shall consider this more in section 4.4.

Instead of using the DNS LOC record, we propose an alternative spatial resolution

mechanism to resolve a physical location to a network address. Recall that this system

is being designed as a mechanism for an AR headset (§2.1.2) to address the world of

ubicomp devices. The headset will know its location through spatial tracking and will

know where the user is interacting through gaze, gestures or voice. This may come with

some degree of precision depending on the APIs. Recall that Weiser identified location

and scale as having crucial importance for ubicomp devices (§2.1). We will conflate scale

and precision into a search area for the sake of simplicity, but it could be possible to have

richer APIs to distinguish these.

4.3.1 Spatial Mapping

The first problem as part of this spatial resolution mechanism is mapping a higher

dimensional space into a lower-dimensional space. Note that in this context mapping

refers to a prescribed way of assigning each point in our higher dimensional space to a

point in our lower-dimensional space, not cartography. To achieve this we can use

Hilbert curves: space-filling curves that fill a 2D square with a 1D line [27]. They are

fractal curves, with arbitrary precision based on their order, which represents how many

iterations to perform. It’s possible to use other fractal space filling curves, such as Peano

curves [47] or Murray Polygons [11], but these underlying principles stay the same.

Figure 4.3 diagrams Hilbert curves from order 1 to 4. We only diagram in 2 dimensions,

but Hilbert curves can be extended to 3 dimensions.

Hilbert curves preserve locality when mapping a 1D space to a higher dimension. Two

points close to each other in 1D space will be close in the higher dimensional space. This

is useful for our spatial mapping as it means we can represent an area through an interval

of the Hilbert curve. Figure 4.4 shows an example of this, where the shaded circle is

the area we want to map, representing an object of that scale, or a point with a certain

precision. The numbers in the grid squares index the Hilbert curve at that point on the

curve.
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n = 1 n = 2

n = 3 n = 4

Figure 4.3: Hilbert Curves with order n [27]

1

2 3

55

12

55

58

Figure 4.4: Spatial mapping of the circle in grey to points on a Hilbert curve of order 3.
The indices of the Hilbert curve that the circle’s area intersect are 5–12, 55 and 58,

denoted with red points.
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Note that while points in 1D space will appear close to each other in 2D space, the

converse is not necessarily true, which is why we can’t always represent an area by one

continuous interval. This is demonstrated by the fact that the points we map to on the

Hilbert curve in figure 4.4 are 5–12, but also 55 and 58.

The simplest alternative to using a space-filling curve would be a progressive scan

across the search area. That is, converting the points to a 1D value with a formal such

as x + y ∗ width. This would only maintain an interval horizontally. Taking the bottom

left of the graph as (0, 0), x as horizontal, and y as vertical, would result in the intervals

11–12, 19–21, 27–29 and 35–36 for figure 4.4. Compared to our space-filling curve, this

preserves locality much less well, and the additional intervals would have implications for

the complexity of our lookup.

4.3.2 Resolution Mechanism

With this mapping from 2 dimensions to 1 dimension, we have the first part of our spatial

resolution mechanism. The second part is how to resolve these intervals to a network

address. We shall describe a query area as the intervals associated with an area that a

client is querying, and an address area as the area associated with a particular network

address, also represented by a set of intervals. We want to find all the address areas that

overlap with our query area. For example, in figure 4.5 we can find the overlap of our

query area (in grey) with the address area (in blue) as the Hilbert curve indices that are

contained in both.

10

1112

55

Figure 4.5: Resolving a spatial location to network address via the overlap of our query
area (grey) with an address area (blue).The indices of the Hilbert curve where the areas

overlap are 10–12 and 55.
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We can use an augmented1 interval tree to find the overlapping intervals. An interval

tree is a data structure that, given an interval, efficiently finds if it overlaps with any

existing intervals. We use a self-balancing Binary Search Tree (BST) to maintain a set of

intervals such that all insertion, deletion, and searching for overlapping intervals can be

done in O(log n) time. Each node in the tree will contain:

(1) An interval represented by a pair [low, high].

(2) The maximum value occurring in subtree below the node.

(3) An address which the interval represents the address area of.

The low value of a node’s interval is used as the BST key. That is, the invariant that

must be maintained is that every node in the left subtree must have its lower interval be

less than or equal to the subtree root node, and every node in a right subtree must have

its lower interval be greater than the subtree root node. The self-balancing red-black tree

insert and delete operations are excluded for the sake of brevity.

The query logic for this tree is:

// check if intervals overlap

overlap(interval1, interval2) {

return interval1.low <= interval2.high && interval1.high >= interval2.low

}

search(node, interval, addresses) {

if (node == NULL) {

return NULL

}

if (overlap(node.interval, interval)) {

addresses.add(node.interval.address)

}

if (node.left != NULL && node.left.max >= i.low) {

search(node.left, interval, addresses)

}

else {

search(node.right, interval, addresses)

}

}

query(intervals) {

addresses = set()

// for every interval in query area

for interval in intervals {

search(root, interval, addresses)

}

return addresses

}

1No relation to augmented reality; augmented here refers to augmenting a binary tree.
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This is a modification of a standard augmented interval tree as it returns every

overlapping interval, not just the first one found. This is to deal with overlapping

address areas, where we want to return every address found so the client knows about

the ambiguity.

To illustrate this resolution mechanism, figure 4.6 illustrates one possible balanced

tree associated with the blue address area depicted in figure 4.5. We shall consider the

search on this tree for the first interval from the query area in figure 4.5: [5–12]. When

comparing to the root node [36–36] we recurse on the left subtree from the root as 5 < 36,

comparing against the node interval’s lower bound, and 5 < 55, comparing against the

node’s maximum value. We recurse again on the left subtree from [29–29], as 5 < 29 and

5 < 34. At the node [10–12] we find a match as 10 < 12 and 12 < 10.

[36–36]
55

[53–55]
55

[29–29]
34

[31–34]
34

[10–12]
12

Figure 4.6: The augmented interval tree for the blue address area from figure 4.5. The
format of the nodes is the interval represented by the pair [low–high] with the max
value below. The address associated with a node is omitted as they all belong to the

same address area.

The complexity of this resolution algorithm is:

O(q(log(n) +m))

where q is the number of intervals in the query, n is the number of intervals in the tree,

and m is the number of overlapping intervals with the query area (the size of the address

set). From this complexity, we can see why it’s important that the space filling curve we

use preservers locality and minimises the number of intervals we have to deal with.

To consider an extreme example of a large number of intervals, consider querying the

entirety of a large music venue with many ubicomp devices. This could overload the

client, or the network, with too many results. In practice, it may be prudent to have a

maximum amount of addresses to be returned in a response, or limit the area clients can

query, and instead return an error to the client prompting them to query with a more

precise area.
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Another scaling issue may be with the size of queries. Ethernet’s maximum

transmission unit (MTU) of 1500 bytes is the de-facto standard in the Internet. We

have intentionally not specified an on the wire format for our queries, as this is left to

future work, but 1500 bytes is only enough for 46 32-bit integers. It is very possible that

with our queries containing a list of all the Hilbert curve indices this may be too large to

transmit in a single packet. One solution to this would be to use TCP as a transport

protocol as it doesn’t have such size limitations. Another would be to encode the

geometry of the query area in a higher-level description than the Hilbert curve indices,

such as a sphere with a radius at a particular coordinate, or a polygon made up of a

number of coordinates, which could then be decoded into Hilbert curve indices when

received.

We’ve described the spatial resolution mechanism of the SNS, but we haven’t described

what device will be receiving and responding to this query. This shall be the topic of our

next section.

4.4 Spatial Architecture

We have described a spatial mapping for resolving locations to network addresses

algorithmically (§4.4), but this is not enough to complete the Spatial Name System

(SNS). We also need an associated system architecture for the SNS. To draw an analogy,

our spatial mapping is like the mechanism by which records are associated with a

domain in DNS, but the architecture of the system is how zones are delegated, how

recursive and iterative resolvers work, and how clients query the system.

However, the existing DNS is inadequate for our AR interface into ubicomp. The

DNS has a strict hierarchical structure with centralized control, and authority is delegated

based on zones. Figure 4.7 shows an example of a DNS lookup for a local device which

relies on this global infrastructure. This is not an appropriate naming mechanism due to

reliability, latency, security, and privacy issues (§2.2.3).

In section 4.4, based on our experience with the LOC RR, we considered mDNS for

our spatial mapping. Mutlicast DNS is a decentralised protocol that resolves hostnames

to IP addresses in a local network through UDP multicast (§4.7). Figure 4.8 shows an

example of an mDNS lookup for a local device. It is well suited for service discovery in a

local network, but this model of communication is ill-suited to our use case. Consider the

case from section 4.4 where we are in a large music venue with many ubicomp devices.

There would be no mechanism for limiting the results returned which could flood the

client or receiver with responses. We are also constrained to a UDP broadcast domain,

which may be an issue with devices using a disparate range of connectivity. Finally, there

are insufficient security and privacy considerations.

Instead, we propose a decentralised naming architecture that still uses a DNS server.

Figure 4.9 shows an example of a lookup in this system. In section 4.3 we assumed
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Recursive Resolution 
Iterative Resolution

Communication
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Figure 4.7: An example of the requests associated with a DNS lookup for a local device.
The client requests the address of the device, through a recursive request to a DNS
resolver. The DNS resolver makes iterate request to the root server, TLD server, and
finally the authoritative nameserver. The result is returned to the client who can then

communicate with the device.

...

Device 1

Device 2

1
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1

2

1
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mDNS Resolution 

Communication

Client

3

Router

Figure 4.8: An example of the requests associated with an mDNS lookup for a local
device. The client requests the address of Device 1, by sending a multicast message on
the local network. The response is returned to the client and also multicasted on the

network. All other devices participating in mDNS snoop on these packets.
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Figure 4.9: An example of the requests associated with a Spatial Name System (SNS)
lookup for a local device. The client sends a request to the SNS server, the server uses

the spatial mapping algorithm (§4.4) to map this to a network address, which is
returned to the client. The client can then communicate with the device. Note that the

device can update the server with its location directly and locally.

a coherent cache to map Hilbert curve index ranges to addresses. The SNS server will

maintain this augmented interval tree data structure. The Client could find the SNS server

through a fixed IP address, an extension to DHCP, or even using mDNS to bootstrap the

process.

This will require support from the environment. The server could be a dedicated

device, a ubicomp device that is consistently available, or even could be added to a WiFi

access point/routing device as increasing functionality is being pushed into the network.

This local DNS server could run a version of ocaml-dns modified with our spatial

mapping algorithm, and an appropriate new resource record. This would be suitable to

run as a unikernel, especially if the device is an embedded device, for the benefits in

performance and security §(4.1).

4.4.1 Scaling

While Hilbert curves are suitable for spatial mapping in a local environment, they don’t

address how to scale this architecture to naming across larger distances. For example,

while our spatial mapping algorithm is an appropriate mechanism for resolving locations

in a room, we will run into complexity issues for a large number of devices due to our

logarithmic complexity with respect to the number of intervals of address areas (§4.3.2)
For a large area, like a city, even with a low number of devices with a big location accuracy

this could get computationally expensive quickly.

The environments we are considering for deploying our SNS are naturally segregated
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by physical boundaries, such as rooms, buildings, and cities. We propose siloing the SNS

into discrete ‘cells’ corresponding to these physical domains. We could use the existing

DNS as a bridge between our SNS servers, as we are unlikely to require low latency

communication with remote devices, but it may still be useful to name devices by their

location; for example, a person querying what devices are in their office from home. These

multiple SNS instances would be interconnected through normal Internet routing.

4.4.2 Mobility

We referred to a 3-dimensional mapping to a 1-dimensional network address when

discussing the spatial mapping mechanism (§4.3). However, there is a 4th dimension

that we have touched on: time. As ubicomp devices can be physically small and mobile,

we need to consider how our architecture will support devices whose location changes

over time. First of all, we will need infrastructure to support positing systems for

locating devices indoors with sufficient accuracy (§2.3). When a device moves location,

it will update the SNS server with it’s location directly as described in figure 4.9. This is

analogous to dynamic DNS (DDNS), except having the entire system locally will remove

the propagation time of DNS TTL values. Once the SNS server receives this value, the

update function of the spatial mapping mechanism (§4.4) will be used to update the

map.

4.4.3 Security and Privacy

The DNS LOC record has the following security considerations made of it:

High-precision LOC RR information could be used to plan a penetration

of physical security, leading to potential denial-of-machine attacks. To avoid

any appearance of suggesting this method to potential attackers, we declined

the opportunity to name this RR “ICBM”.

RFC 1876

‘A Means for Expressing Location Information in the Domain Name

System’ [15]

This highlights that location can be very sensitive data. There are a few other notable

issues with the DNS LOC: it is publicly available to anyone, and there is no verification

that the location associated with a domain is accurate.

As we are discussing the security of the SNS, it is essential to define a threat model

to understand the risks to our new architecture. For example, using SNS will not prevent

a malicious actor from physically accessing a device to compromise it. The main attack

vector for IoT devices is through remote access. Physical attacks are possible, but our

physical environments are already designed with security in mind, and these attacks do

not scale. A remote attacker can target millions of machines and networks with ease,
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whereas a physical attack takes time, planning and is much riskier for the attacker. We

shall therefore consider our threat model as consisting of how remote attackers might

compromise our system and we rely on physicality to enable security as much as possible.

This is at odds with the DNS security extensions DNSSEC, which relies on a highly

centralized model.

Like many early Internet Protocols, DNS was not designed with any security or privacy

measures in mind, as it was developed in a much more cooperative environment than the

modern Internet. If a man-in-the-middle, such as your ISP, were to intercept your DNS

query then they could return any desired IP address, such as a link to a phishing site.

While the use of higher-layer security mechanisms like TLS and HTTPS mitigate this,

they are still vulnerable to Certificate Authority compromise.

DNSSEC provides a set of security extensions to DNS to authenticate responses, so

a resolver knows that the response was signed by the holder of a key signing key (KSK).

There is a hierarchical authentication model with each zone relying on a it’s parent zone

to server (and sign) a hash of it’s zone signing key (ZSK) as a delegation signer (DS)

record [52]. Note the ZSK is used to sign a KSK, so that the KSK can be frequently

.
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Figure 4.10: Visualisation of the DNSSEC status for the gibbr.org domain [23]
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changed to meet security requirements, but the ZSK doesn’t need to be updated with

downtimes in DNSSEC due to DNS TTLs and propagating the change in DS record.

The root domain is signed in a root signing ceremony, where 7 people from ICANN and

other trusted Internet community members sign the root zone’s public keying information.

This ceremony is the source of trust for the entire system. Figure 4.10 shows how this

trust is propagated down the delegation tree for the domain gibbr.org.

As we want to enable local, optionally offline, operation, we don’t want to rely on an

external centralized source of trust like DNSSEC. However, as long as we trust the local

environment, we don’t require authentication of the responses. We are not querying across

an Internet filled with censoring ISPs and snooping middleboxes. This trust is informed

by our threat model: we rely on the local physical environment to be trustworthy.

Additionally, DNSSEC’s model of authentication would only authenticate messages

from the SNS server in our case - but not the location updates from devices themselves.

A device could lie about where it is. How could we stop a malicious or compromised local

device from fabricating its position? We could rely on the physicality offered by ubicomp.

One possibility is using ultrasound beacons broadcasting a one-time pad (OTP) from the

SNS server, so the device has to physicality obtain this key from a room it’s updating

itself to be in [37, 36].

Similarly, the same mechanism could be applied for access control on queries. There

could be a policy such that a person has to be physically present in a room to make a

query of the devices there. As mentioned with our threat model, attacks on this system

would not scale due to its reliance on physical mechanisms. It would also provide a much

more seamless experience, more aligned with the vision of ubicomp (§2.1), if a user could

simply authenticate themselves with their presence rather than solutions like clunky WiFi

login portals that harvest user data.

Due to DNS’s connectionless query mechanisms, using UDP, it’s a prime target for

Denial-of-Service (DoS) attack amplification. This is a type of DoS attack where the

attacker sends a request with a spoofed source IP to the server, which then responds to

the spoofed IP address with a response larger than the original query. Running many SNS

servers that respond to Internet queries with large UDP responses could provide a whole

new application vector for these attacks. One limiting factor would be the relatively large

SNS query sizes, compared to DNS queries, with the range of Hilbert curve indices (§4.4).
A larger query size reduces the application factor. If the response is smaller than the

query, this amplification factor will be less than 1.

Another mechanism to mitigate this could be authentication on queries. A user would

encrypt their authentication token with the SNS server’s public key, and unauthenticated

queries would be ignored. This could be a standard username and password system,

or even a token obtained from being in the location physicality within some timeframe.

This would only be useful for remote queries as due to the threat model we trust queries

originating locally.
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The final mitigation, possibly the most simple, would be to use a connection orientated

transport layer protocol like TCP. If the attacker uses a spoofed IP, the TCP 3-way

handshake will fail. The one packet sent to the spoofed IP - the SYN packet - will not

result in any amplification. Therefore, an application attack will not be possible with a

connection orientated transport protocol.

While we have considered security in the context of authentication, authorisation and

DoS mitigation, another very related issue is privacy. Location can be a particularly

sensitive type of information [70, 7]. While the local positioning system (§2.3) has its own
privacy implications, transmitting this data over the network is what we’re concerned

with for the SNS.

Schemes like DNS over TLS (DoT), or DNS over HTTPS (DoH), encrypt DNS queries

and prevent middlemen from snooping on queries. We could use the same approach for

SNS queries and updates. It could still be possible for an actor to infer a client’s location by

snooping on the addresses they are communicating with. Web proxies multiplex multiple

hosts on one address to mitigate this, using TLS 1.3 encrypted Server Name Indicator

(eSNI), or TLS encrypted ClientHello (ECH), to prevent the hostname being disclosed

by the TLS handshake. We could add a similar privacy-preserving proxy in our local

network, but there would be a non-trivial complexity and overhead.

Having said all of this, many modern smartphones are live tracking users’ locations

across the world with GPS and storing this sensitive data in remote data centres [48, 45].

So even that only tracked your location locally would be a privacy improvement over this.

We should stress that there is no purely technical solution to privacy and any approaches

must consider the social issues in their own right.

4.5 Summary

In this chapter, we have explored the implementation of, and proposed the design of,

the Spatial Name System. We started by selecting suitable technologies to create the

SNS (§4.1). Then we implement the DNS LOC resource record in the OCaml DNS

library (§4.2), starting with parsing the location information in sexagesimal latitude and

longitude (§4.2.1), encoding the data in the RFC’s specified on the wire format (§4.2.2),
and thoroughly tested our implementation (§4.2.3). However, from implementing this

record we determined that it was not suitable for the SNS, so we designed a spatial

resolution system (§4.3) mapping higher-dimensional spaces to 1 dimension with Hilbert

curves (§4.3.1) and resolving points on a Hilbert curve to network addresses with an

augmented interval tree (§4.5). We described the required architecture to make a workable

system out of this algorithm (§4.4), contrasting it with the existing DNS and mDNS

systems, with special attention paid to scaling this system past local environments (§4.4.1),
to support devices that move location (§4.4.2), and security and privacy considerations

with this system (§4.4.3).
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CHAPTER 5

Related Work

The vision of ubicomp has been an active area of research for decades. However, we argue

it has lost its way in recent years with the trend toward the Internet of Things, and we

constrain ourselves to related work covered in the background (§2.1). However, there has
been other work related to this project that we shall summarise to put our work into

context, highlight the novelty of the Spatial Name System, and provide further material

for the curious reader.

The Main Name System (MNS) [14] proposes an even more centralized DNS

architecture, separating the administrative logic and distribution logic, for benefits in

simplicity and removing inconsistencies This work inspired the Spatial Name System in

its radical rethinking of an archaic Internet protocol, but the SNS goes the opposite

direction in proposing a radical decentralised architecture, and does not maintain a

consistent interface for clients and resolvers.

Another attempt at rethinking naming in the Internet includes the Intentional Naming

System (INS) [2]. Published in 1999 — the same year as ‘The Computer for the 21st

Century’ [70] — this system proposes a radical rethinking of naming in the Internet with

a decentralised system. Similarly to the more modern and less revolutionary mDNS, it

operates locally with decentralised nodes, and supports service discovery. It also proposes

an alternative naming mechanism to domain names, ‘Intentional names’, which aim to

address content by what the user is looking for (‘intent’) rather than using hostnames or

domain names. These ideas developed into Information-Centric Networking.

The authors of the INS propose an example application ‘Floorplan’, a service discovery

tool showing how location-based services can be discovered using the INS. An example

request for this is:

[service=camera[entity=transmitter] [id=a]] [room=510]

The proposed use case for this is a map displayed to the user with services represented

with icons, which could be interpreted as prototypical of our augmented reality interface

into ubicomp devices.
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Chapter 5. Related Work

While our work is proposing decentralisation of naming in the Internet through local

architecture, an alternative approach is using blockchain technologies. The Ethereum

Name Service (ENS) [1, 74] is one such approach. The ENS maps human-readable names

— comparable to domain names — to identifies like Ethereum addresses. The .eth is

‘Ethereum native’, but it also supports ‘importing’ a DNS name into ENS for existing

TLDs like .com. This consists of proving ownership using DNSSEC and a TXT record to

authenticate ownership of the domain.

The SNS’s notion of resolving physical locations to network addresses is relatively

novel, but work has been done on routing using physical location for MANETs with

Greedy Perimeter Stateless Routing [33]. This assumes a service for resolving network

addresses to physical locations, which is the inverse of our required system. Grid’s location

system [35] is one such system that tracks mobile node locations in a distributed system.

Other work on geographic routing includes RFC 2009 ‘GPS-Based Addressing and

Routing’ [32]. This proposes routing mechanisms taking advantage of geographic

information, such as multicasting to geographical regions and providing and advertising

a service within a restricted area. The encoding of areas consists of a series of points

forming a polygon to perform ‘geographic addressing’. The RFC proposes a mechanism

for encoding geographical addressing, using the scheme:

site-code.city-code.state-code.country-code

Finally, we shall mention the significant body of work on spatial indexing [44, 4, 68].

We have chosen a simple mechanism for our spatial mapping (§4.3) that is well suited

to low latency updates and that can be updated incrementally, but it’s very possible a

better solution exists.
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CHAPTER 6

Conclusions

Recall from chapter 1 that our vision with this project was an augmented reality (AR)

interface into the world of ubicomp. Our thesis statement was:

We have the hardware and software to support low latency augmented

reality interactions, but the current network architecture is inadequate to

support interconnecting them. We need a Spatial Name System that can map

physical device locations to network addresses to overcome this limitation and

unlock the potential of augmented reality.

Let us start by considering the first part of this statement that ‘We have the

hardware and software to support low latency augmented reality interactions but the

current network architecture is inadequate to support interconnecting them’. In our

background work (§2), we described this hardware and software in the form of ubicomp

and IoT devices (§2.1.1), as well as the HoloLens 2 augmented reality headset (§2.1.2).
We described why the existing infrastructure is inadequate (§2.1), describing address

solution mechanisms (§2.2.1), how the current naming system came to be (§2.2.2), and
why the DNS is insufficient (§2.2.3). In our work with the HoloLens (§3) we tested this

thesis by selecting cutting edge hardware (§3.1) and building a low latency AR

program (§3.2.1) with mixed reality controls (§3.2.2). While working with the

Holens (§3.2.3) we realise that the APIs are just not there to support our vision of an

Augmented Reality Interface (§3.3).
Through this work, we’ve justified that ‘We need a Spatial Name System that can

map physical device locations to network addresses to overcome this limitation and

unlock the potential of augmented reality.’ We explore the design of this Spatial Name

System (SNS) (§4), justifying the technologies we’ve used towards this goal (§4.1). We

implement the DNS LOC record in the OCaml DNS library but find it is not suitable

for our use case (§4.2). We instead propose a spatial resolution mechanism (§4.3) to

map physical spaces to a 1 dimensional representation (§4.3.1) and resolve these to

network addresses efficiently (§4.5). We describe the decentralised architecture of this

system with infrastructure support (§4.4) with considerations for scalability (§4.4.1),
mobility (§4.4.2), security and privacy (§4.4.3).
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6.1 Future Work

A reoccurring issue throughout the practical parts of this project was reproducibility.

(1) The Active BAT system (§2.3) was attempted to be revived, and the hardware was

all still installed, but the software was no longer supported or in common use. (2) While

developing for the HoloLens, setting up the development environment, as well as building

a project once it was set up, was a tedious process of reading textual instructions and

using performing imperative operations through GUIs (§3.2.1). Additionally, regarding

our experiment with Microsoft’s environment, it was not possible to build the Windows

Terminal locally for indeterminate reasons (§3.2.3). (3) OCaml’s package manager opam

and build system dune were pleasant to use once one gained familiarity with them (§4.2),
however, they could still benefit from having more reproducible environments.

We want to be able to rely on our infrastructure for not just 2 years, 3 years, or 4

years; but 20 years, 30 years, 40 years, or more. Hardware obsoletion is not the problem

it used to be, with the power of modern small energy-efficient computers, and as we are

not seeing such drastic increases in computing performance as we used to — Moore’s

law is declining. Despite the obvious environmental and sustainability issues, having

impermanent technological infrastructure has economic costs too. To remedy this, the

reproducible and declarative package and configuration manager NixOS [16] has been

used during this project. The DNSSEC visualisation in figure 4.10 was obtained from an

authoritative DNS nameserver running on NixOS (with Bind9, as Ocaml DNS doesn’t

support server-side DNSSEC). Future work includes exploring how this can benefit our

Spatial Name System and ubicomp as a whole.

Other future work includes exploring the HoloLens spatial mapping APIs in more

depth including object tracking, object placing and navigation. In this project, once we

had a basic game working, we focused on trying to network the device.

Another area is exploring the sophisticated spatial indexing techniques mentioned in

chapter 5. We choose to design a mechanism for our spatial resolution which was well

suited to low latency efficient lookups (§4.3), but there is certainly the possibility of finding
a more appropriate algorithm.

And finally, the most obvious aspect for future work is to implement and experiment

with the Spatial Name System. Unfortunately due to the time constraints of the project

we were unable to complete this. To this end, I’m planning on continuing this area of

research in my doctoral studies.
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