
Cache and Multi-Core Efficient Algorithms for

High-Degree Permutations

Steve Linton and Ryan Gibb
University of St Andrews
{sl4, rtg2}@st-andrews.ac.uk

October 2020

Abstract

The traditional naive permutation composition algorithm is limited by memory latency
and not CPU speed. Algorithms to take advantage of current memory hierarchies and
multiple cores can be designed so as to be limited by memory bandwidth instead. We have
implemented and benchmarked a number of such algorithms. We have found a multithreaded
Rust implementation of the naive algorithm is 64% than the naive algorithm on an Intel
Xeon E3-1230 v5 with 64GB RAM for permutations of degree 232. This can be adapted to
improve the performance of other permutation operations, as well as other algorithms that
access large amounts of main memory pseudo-randomly.

1 Introduction

Work was done on creating a permutation composition algorithm to overcome this ‘memory
wall’ in 2002 by Cooperman and Ma using a bucket algorithm to make effect use of the
cache.[1] This algorithm will be refer to as the ‘Cooperman & Ma algorithm’ hereafter. We
will see how their algorithm holds up on modern hardware for significantly larger permuta-
tions - up to n = 232 compared to the previous n = 220.

The other algorithms considered are the naive algorithm as a baseline, a multithreaded
naive algorithm, a multithreaded Cooperman & Ma algorithm, and a vector optimised naive
algorithm.

2 Design

A permutation σ of degree n is a bijective function from a set S = {1, . . . , n} onto itself,
represented as an array x of length n where the value at index i in the array is the image
of i under σ. More simply, if σ(i) = j then x[i]=j.

Given two permutations i 7→ σ(i) and i 7→ π(i), their composition σπ is defined as
i 7→ π(σ(i)).

Taking two permutations x and y, the following algorithms calculate their composition
z=xy. All of x, y, and z must of length n, with x and y containing every value from 0 to n

- 1 exactly once.
Let perm_t be the type of the permutation arrays; the type of the elements in the per-

mutation image. This determines the maximum permutation degree than can be composed;
as well as the number of bytes used to store the permutation n*sizeof(perm t).

1

2.1 Naive

1 perm_t x[n], y[n], z[z];
2

3 for (size_t i = 0; i < n; i++) {
4 z[i] = y[x[i]];
5 }

Listing 1: Naive Algorithm

2.2 Cooperman & Ma

Note CACHE SIZE is the number of bytes in the target cache.

1 #define BLOCK_LENGTH (CACHE_SIZE / 2 / sizeof(int))
2 #define NUMBER_OF_BLOCKS = (n / BLOCK_LENGTH)
3

4 perm_t x[n], y[n], z[z];
5 perm_t d[n];
6 perm_t* d_ptr[NUMBER_OF_BLOCKS];
7

8 //Phase I: distribute value , x[a], into d_ptr[block_num]
9 // such that block_num == x[a] / BLOCK_LENGTH

10 for (size_t block_num = 0; block_num < NUMBER_OF_BLOCKS; block_num ++) {
11 d_ptr[block_num] = &d[block_num * BLOCK_LENGTH];
12 }
13 for (size_t i = 0; i < ARRAY_LENGTH; i++) {
14 block_num = x[i] / BLOCK_LENGTH;
15 *d_ptr[block_num] = x[i];
16 d_ptr[block_num]++;
17 }
18

19 //Phase II: for d[i] == x[a], replace the value x[a] by y[x[a]]
20 // Note that |i - d[i]| == |i - x[a]| and |i-x[a]| < BLOCK_LENGTH
21 for (size_t i = 0; i < ARRAY_LENGTH; i++) {
22 d[i] = y[d[i]];
23 }
24

25 //Phase III: copy value y[x[a]] from d_ptr[block_num] to \[a]
26 for (size_t block_num = 0; block_num < NUMBER_OF_BLOCKS; block_num ++) {
27 d_ptr[block_num] = &d[block_num * BLOCK_LENGTH];
28 }
29 for (int i = 0; i < ARRAY_LENGTH; i++) {
30 block_num = x[i] / BLOCK_LENGTH;
31 z[i] = * d_ptr[block_num];
32 d_ptr[block_num]++;
33 }

Listing 2: Cooperman & Ma Algorithm[1]

2.3 Multithreaded Naive

This algorithm splits the permutation into different slices of x and z, and runs a thread for
each slice to naively compose them in parallel. The number of threads should not exceed
the number of CPU cores. Note y is shared between all threads.

2.4 Multithreaded Cooperman & Ma

Phase 2 of the algorithm is run in parallel with the ‘blocks’ in d distributed between threads
and each thread operating on a number of blocks independently. As with multithreaded
naive the number of threads should not exceed the number of CPU cores and y is shared
between all threads.

2.5 Naive Optimised

Signed perm_t values, the restrict type qualifier for permutation array arguments to the
function, and compilation with the -march=native flag (to target the compilation machine’s
hardware), results in assembly code using vector optimisations.

2

3 Implementation

The naive and Cooperman & Ma algorithms were implemented in C and Rust to ensure using
Rust wasn’t effecting performance. The multithreaded algorithms were written in Rust for
efficient memory safety. The naive optimised and unrolled algorithms were implemented in
C for fine grained optimisation and compilation control.

The implementations here aren’t included for the sake of brevity as they are either
essentially the same as the algorithm design or are obfuscated by optimisations.

Timings were done with calls to clock gettime. Wall clock time was used, as opposed
to CPU time, due to the latter’s complications with multithreading. If the composition
took less than 10 milliseconds the number of times the composition was done was doubled
(growing exponentially) with a loop in between the clock gettime calls until it took 10
milliseconds or more. This was done to remove issues with the accuracy of the system
call for very small intervals. It’s possible this may give faster than actual results for small
permutations due to caching, but the effects should be consistent across algorithms.

The repository can be found at github.com/RyanGibb/uras-permutations, containing
the implementations, assembly, testing script, benchmarking script, and benchmark CSV
file.

3

https://github.com/RyanGibb/uras-permutations

4 Results

Log base 2 of Permutation Degree

Ti
m

e
pe

r P
er

m
ut

at
io

n
D

eg
re

e
(n

s)

0.5

1

5

10

50

10 15 20 25 30

memory bandwidth

composition rust naive

composition rust cooperman_ma
cache_size=2^24B=16MB

composition rust multithread_naive
threads=4

composition rust
multithread_cooperman_ma
threads=4
cache_size=2^24B=16MB

composition c naive_optimized

composition c unrolled rolls=4

On Mandel (4 bytes per permutation)

Time per Permutation Degree vs Permutation Degree: Algorithms

Figure 1: Time per Permutation Degree vs Permutation Degree

‘On Mandel’ refers the the machine that the benchmarks were done on. It has an Intel
Xeon E3-1230 v5 and 64GB RAM. 4 bytes were used per permutation, giving a maximum
permutation size of 24∗8=232. The amount of memory used per algorithm can be calculated
by 3 (for of x, y, and z permutations) times the degree of the permutation times 4 bytes
per permutation. For example, the largest included here is for permutations of degree 232,
so 3 ∗ 232 ∗ 4 ≈ 51GB.

The blue dotted line shows the memory bandwidth shows as 19.45 bytes per nanosecond
for all reads, as measured by Intel® Memory Latency Checker v3.9[2]. This is the theo-
retical limit of the performance of the algorithms on this hardware as the permutation size
approaches infinity.

When the algorithms outperform this it is due to caching. For example in figure 1, this
limit is crossed for permutations of degree 221, at 221 ∗ 4 ≈ 8MB per permutation. This is
explained by the CPU having a shared L3 cache size of 8MB[3]. The reason why this is the
size of one permutation, and not three, is because only y is being accessed randomly; x and
z and read and written respectively sequentially.

The exception to this is rust multithreaded_naive. We can see the overhead of this is
high for small permutations, but outperforms the non-multithreaded algorithms for degrees
larger than 218 which is about 1MB. It plateaus from 223 ∗ 4 = 16MB to 228 ∗ 4 = 1GB
where it finally fails to break the barrier.

4

Log base 2 of Permutation Degree

Ti
m

e
pe

r P
er

m
ut

at
io

n
D

eg
re

e
(n

s)

0.5

1

5

10

50

100

10 15 20 25 30

memory bandwidth

composition rust naive

composition rust cooperman_ma
cache_size=2^14B=16KB

composition rust cooperman_ma
cache_size=2^15B=32KB

composition rust cooperman_ma
cache_size=2^16B=64KB

composition rust cooperman_ma
cache_size=2^17B=128KB

composition rust cooperman_ma
cache_size=2^18B=256KB

composition rust cooperman_ma
cache_size=2^19B=512KB

composition rust cooperman_ma
cache_size=2^20B=1MB

composition rust cooperman_ma
cache_size=2^21B=2MB

composition rust cooperman_ma
cache_size=2^22B=4MB

composition rust cooperman_ma
cache_size=2^23B=8MB

composition rust cooperman_ma
cache_size=2^24B=16MB

On Mandel (4 bytes per permutation)

Time per Permutation Degree vs Permutation Degree: Cooperman & Ma Algorithm Cache Sizes

Figure 2: Cooperman & Ma Algorithm Cache Sizes

Figure 3: C

Log base 2 of Permutation Degree

Ti
m

e
pe

r P
er

m
ut

at
io

n
D

eg
re

e
(n

s)

0.5

1

5

10

50

100

10 15 20 25 30

memory bandwidth

composition rust naive

composition rust multithread_cooperman_ma
threads=4 cache_size=2^14B=16KB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^15B=32KB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^16B=64KB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^17B=128KB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^18B=256KB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^19B=512KB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^20B=1MB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^21B=2MB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^22B=4MB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^23B=8MB

composition rust multithread_cooperman_ma
threads=4 cache_size=2^24B=16MB

On Mandel (4 bytes per permutation)

Time per Permutation Degree vs Permutation Degree: Multithread Cooperman & Ma Algorithm Cache Sizes

Figure 4: Multithread Cooperman & Ma Algorithm Cache Sizes

5

Figures 3 and 4 were used to determine the optimal cache size for single threaded and
multithreaded Cooperman & Ma algorithms respectively. The naive algorithm was included
as a comparison.

5 Conclusion

As can be seen the multithreaded naive algorithms outperform the bucket Copperman &
Ma algorithm. Further work to be done includes exploring the effects of a multi-level
bucket algorithm to take advantage of L1 and L2 caches and different memory latency’s in
NUMA systems; and creating an optimised multi-core bucket algorithm, building on the
multithreaded Cooperman & Ma algorithm.

More investigation into the multithreaded algorithm outperforming the bandwidth limit
for permutations up to 228 is required. It is possibly a result of the non-NUMA architecture.
It is also possible that the latency results are simply slightly pessimistic.

Investigation into dynamically choosing the algorithm for different hardware and per-
mutation sizes is another avenue of interest.

References

[1] G. Cooperman and X. Ma. Overcoming the memory wall in symbolic algebra: a faster
permutation multiplication. SIGSAM Bull., 36:1–4, 2002.

[2] Intel® memory latency checker v3.9. https://software.intel.com/content/www/us/
en/develop/articles/intelr-memory-latency-checker.html.

[3] Intel® xeon® processor e3-1230 v5. https://www.intel.com/content/www/us/

en/products/sku/88182/intel-xeon-processor-e31230-v5-8m-cache-3-40-ghz/

specifications.html.

6

https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://software.intel.com/content/www/us/en/develop/articles/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/products/sku/88182/intel-xeon-processor-e31230-v5-8m-cache-3-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/88182/intel-xeon-processor-e31230-v5-8m-cache-3-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/88182/intel-xeon-processor-e31230-v5-8m-cache-3-40-ghz/specifications.html

	Introduction
	Design
	Naive
	Cooperman & Ma
	Multithreaded Naive
	Multithreaded Cooperman & Ma
	Naive Optimised

	Implementation
	Results
	Conclusion
	References

